

Published on Web 12/20/2003

Chiral Copper Complexes of Phosphino Sulfenyl Ferrocenes as Efficient Catalysts for Enantioselective Formal Aza Diels-Alder Reactions of *N*-Sulfonyl Imines

Olga García Mancheño, Ramón Gómez Arrayás, and Juan C. Carretero*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

Received September 12, 2003; E-mail: juancarlos.carretero@uam.es

Six-membered nitrogen heterocycles are key units in medicinal chemistry and very interesting intermediates in organic synthesis.1 The catalytic enantioselective Aza Diels-Alder reaction (ADAR) of electron-rich dienes with aldimines is conceptually an extremely powerful strategy for the construction of this type of structures with high enantiopurity.² However, to the best of our knowledge, only three catalyst systems have been described to date for this asymmetric process:3 the zirconium-binaphthol complexes developed by Kobayashi et al.,4 the silver catalysts of phosphine peptide Schiff bases reported by Snapper and Hoveyda,⁵ and the copper complexes of BINAP and phosphino-oxazolines described by Jørgensen et al.⁶ Despite the fact that N-sulfonyl imines are very appealing heterodienophiles because of their low LUMO energy and the expected high crystallinity of their adducts,⁷ the use of such imino dienophiles in catalytic asymmetric ADAR has been essentially restricted to the bidentate and highly reactive N-tosyl imine of ethyl glyoxylate.6

As part of an ongoing program showing the wide potential in enantioselective catalysis of the readily available planar chiral phosphino sulfenyl ferrocenes 1,⁸ we describe herein that the copper(I) complexes of these ligands act as highly efficient chiral Lewis acids in enantioselective formal ADAR of *N*-sulfonyl aldimines with the Danishefsky's diene (**2a**) and derivatives.

We selected as model reaction the ADAR of diene **2a** with the *N*-tosylimine of benzaldehyde (**3a**), process for which the highest reported enantioselectivity was a moderate 48% ee.^{6b} As the first experiment, we performed this reaction in the presence of 10 mol % of the enantiopure ligand (*R*)-**1a**⁸ and Cu(MeCN)₄ClO₄ in CH₂Cl₂ at room temperature. Complete evolution was observed after 5 h, affording mainly the acyclic Mannich-type addition product² **4a** rather than the expected Diels–Alder adduct. Nevertheless, the formal Diels–Alder product, the dihydropyridone **5a**, was readily obtained upon addition of TFA to the reaction mixture (83% yield, 74% ee). As shown in Scheme 1, similar results were achieved using other copper(I) salts such as Cu(MeCN)₄PF₆ (72% yield, 77% ee) and CuOTf (80% yield, 76% ee). The absolute *R* configuration of **5a** was unambiguously established by X-ray analysis.⁹

To prove the P,S-bidentate character of ligands 1 in this Cucatalyzed reaction, we turned our attention toward the isolation of their Cu(I) complexes. Simple combination of equimolar amounts of ligands 1⁸ and CuX (X = Cl, Br) in THF/MeOH afforded in nearly quantitative yields the air-stable Cu(I) dimeric complexes **6** and **7** as single epimers at sulfur. The tetrahedral P,S,X,Xcoordination at copper and the absolute *R* configuration at sulfur were unambiguously established by X-ray analysis of **6a**⁹ (Scheme 2).

With this set of copper complexes in hand, possessing varied electronic and steric environments around the phosphorus atom, we studied their efficiency as chiral catalysts (5.1 mol %) for the

Scheme 1. Copper-Catalyzed Reaction of Danishefsky's Diene with N-Sulfonyl Imine 3a in the Presence of Ligand (R)-1a

^{*a*} CuX (X = Cl, Br), THF/MeOH, rt, 10 min.

Table 1. Optimization of the Cu(I) Catalyst

TMSO 2a	le + N Ph H 3a	6 or 7 AgClO, CH ₂ then T	(5.1 mol%) ₄ (10 mol %) ₉ Cl ₂ , rt FA (5 equiv)	O Ph 5a
entry	Cu complex	time (h)	yield (%) ^a	ee (%) ^b
1	6a	6	79	80
2	6b	20	70	71
3	6c	20	58	71
4	6d	20	60	55
5	6e	20	66	57
6	6f	3	96	80
7	7a	2	89	80
8	7f	1	90	93(97) ^c

^{*a*} Isolated yield after column chromatography. ^{*b*} Determined by HPLC (Chiralpak AD column). ^{*c*} T = -20 °C (1 h, 87% yield).

model reaction 2 + 3a in the presence of 10 mol % of AgClO₄¹⁰ as halogen scavenger (Table 1). Under these silver-assisted conditions for in situ generation of the presumed active cationic Cu catalyst, the complex **6a** furnished the ADAR product in similar yield (79%), but with somewhat higher enantioselectivity (80% ee, entry 1) compared with the results obtained in the absence of a silver salt (Scheme 1, 74–77% ee). As expected, the reaction proved

Table 2. Scope of the ADAR Catalyzed by Complex 7f								
	R ¹	OMe SO ₂ R	³ 7f (5.1 mol AgClO ₄ (10 m CH ₂ Cl ₂ , rt, 1-	%) iol%) ·5 h		SO ₂ R ³		
TMS	SO^	≫ K H	then TEA (E a		0	R		
2a	, R ¹ =	:H 3	then TFA (5 e	quiv)	5			
2b , R ¹ = Me								
ent	R^1	R ²	R ³	prod	yield(%) ^a	ee(%) ^b		
1	Н	Ph	<i>p</i> -Tol	5a	90	93(97) ^c		
2	Н	o-Tol	p-Tol	5b	82	93		
3	Н	$(p-F)C_6H_4$	p-Tol	5c	78	88(93) ^c		
4	Н	(p-OMe)C ₆ H ₄	p-Tol	5d	76	91		
5	Н	$(p-NMe_2)C_6H_4$	<i>p</i> -Tol	5e	39	93		
6	Н	2-Naph	p-Tol	5f	85	86(93) ^c		
7	Н	PhCH=CH	p-Tol	5g	66	83(96) ^c		
8	Н	<i>n</i> -Pr	<i>p</i> -Tol	5h	65 ^c	$73^{c}(82)^{d}$		
9	Me	Ph	<i>p</i> -Tol	5i	64	87(92) ^e		
10	Me	PhCH=CH	<i>p</i> -Tol	5j	57	88^c		
11	Н	Ph	$(p-OMe)C_6H_4$	5k	61	94		
12	Н	$(p-F)C_6H_4$	$(p-OMe)C_6H_4$	5m	78	90		
13	Н	2-Naph	(p-OMe)C ₆ H ₄	5n	56	82		
14	Н	PhCH=CH	$(p-OMe)C_6H_4$	50	58	76		
15	Н	Ph	$(p-NO_2)C_6H_4$	5р	58	90		

^{*a*} Isolated yield. ^{*b*} Determined by HPLC. Absolute configuration assigned by analogy with that of **5a**.⁹ $^{c}T = -20$ °C. ^{*d*}T = -78 °C. ^{*e*}T = 0 °C.

to be deeply influenced by the substitution at phosphorus. Complexes **6b–e** afforded the dihydropyridone **5a** in lower yields and enantioselectivities (entries 2–5) than the model complex **6a**. On the contrary, the bulky α -naphthylphosphino derivative **6f** proved to be more reactive than **6a** (3 h instead of 6 h), affording **5a** in excellent yield (96%, entry 6) with the same enantioselectivity (80% ee).

Interestingly, the dimeric (bromo)Cu complexes **7** showed a remarkable higher reactivity (entries 7 and 8). To our delight, complex **7f**, having the highly sterically demanding α -naph-thylphosphine moiety, exhibited excellent values of reactivity, chemical yield (87–90%) and asymmetric induction (93% ee at room temperature and 97% ee at -20 °C, entry 8).

Next, with optimized catalyst 7f in hand, a variety of other N-sulfonyl imines were prepared and tested under our standard reaction conditions. Table 2 delineates the wide scope of this catalytic ADAR. A survey of representative imino dienophiles revealed a high degree of stereochemical fidelity with a number of electronically varied aromatic imines (entries 1-6, 86-93% ee at room temperature; 93-97% ee at -20 °C). The high reactivity and enantioselectivity displayed by the tosyl imine of cinnamaldehyde (83% ee, entry 7) are noteworthy. Lowering the reaction temperature to -20 °C enhanced the enantioselectivity to 96% ee, the reaction being complete within 1 h (82% yield). As far as we know, this is the first example of a catalytic enantioselective ADAR of α,β unsaturated imino dienophiles.11 This procedure was also successfully applied to the highly reactive aldimines of enolizable aliphatic aldehydes, a kind of heterodienophiles scarcely studied in enantioselective ADAR.^{4c} Thus, the tosylimine of butyraldehyde (3h) reacted with Danishefsky's diene in 30 min at -20 °C, in the presence of the catalyst system 7f/AgClO₄, to provide the dihydropyridone 5h in 73% ee (entry 8). The aliphatic tosylimine 3h is so reactive that the reaction can be carried out even at -78 °C, raising the enantioselectivity to 82% ee

Interestingly, the presence of an additional substituent at the diene (diene **2b**, entries 9 and 10) or a change in the nature of the arylsulfonyl group of the heterodienophile (entries 11-15) provided similar results in terms of both chemical yield and enantioselectivity. The first issue is important for the synthesis of more substituted dihydropyridones (compounds **5i** and **5j**), whereas the second aspect offers varied possibilities for the deprotection of the amino group

of the *N*-sulfonyl dihydropyridones 5^{12} Finally, from a practical point of view, it is important to note that products **5** are quite stable and easy-to-handle crystalline solids, giving rise to enantiopure samples (>99.5% ee) upon a single recrystallization.¹³

In summary, novel copper(I) Lewis acid catalysts, relying on planar chiral 1-phophino-2-sulfenylferrocenes, show excellent activity, enantioselectivity, and structural scope in asymmetric ADAR between *N*-sulfonylaldimines and Danishefsky's type dienes. The mechanistic origin of the high enantiocontrol and the extension of this study to other heterodienophiles and dienes are under current investigation.

Acknowledgment. Support has been provided by MCYT (BQU2000-0226). O.G.M. gratefully acknowledges a M.E.C. Predoctoral Fellowship. R.G.A. thanks the MCYT for a "Contrato Ramón y Cajal".

Supporting Information Available: Experimental procedures and characterization data of new compounds, copies of NMR spectra, and X-ray crystallography data of (+)-**5a** and (+)-**6a** (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For reviews: (a) Rubiralta, M.; Giralt, E.; Diez, A. Piperidine: Structure, Preparation and Synthetic Applications of Piperidine and its Derivatives; Elsevier: Amsterdam, 1991. (b) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633. (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (d) Michael, J. P. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: San Diego, 2001; Vol. 55. For the potential of enantiopure dihydropyridones in alkaloid synthesis, see: (e) Comins, D. L.; Huang, S.; McArdle, C. L.; Ingalls, C. L. Org. Lett. 2001, 3, 469.
- (2) For a review on catalytic enantioselective additions to imines, see: Kobayashi, S.; Ishitani, H. Chem. Rev. **1999**, *99*, 1069.
- (3) This transformation was first achieved by Yamamoto using a stoichiometric amount of a chiral boron complex: Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264.
- (4) (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979. (b) Kobayashi, S.; Kusakabe, K.-i.; Komiyama, S.; Ishitani, H. J. Org. Chem. 1999, 64, 4220. (c) Kobayashi, S.; Kusakabe, K.-i.; Ishitani, H. Org. Lett. 2000, 2, 1225.
- (5) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4018.
- (6) (a) Yao, S.; Johannsen, M.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 1998, 37, 3121. (b) Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A. Chem. Eur. J. 2000, 6, 2435.
- (7) For recent examples on sulfonyl imino dienophiles in ADAR, see for instance: (a) Bauer, T.; Szymański, S.; Jeźewski, A.; Gluziński, P.; Jurczak, J. *Tetrahedron: Asymmetry* **1997**, 8, 2619. (b) Morgan, P. E.; McCague, R.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 **2000**, 515.
- (8) Mancheño, O. G.; Priego, J.; Cabrera, S.; Arrayás, R. G.; Llamas, T.; Carretero, J. C. J. Org. Chem. 2003, 68, 3679.
- (9) See Supporting Information for detailed X-ray data.
- (10) This formal ADAR also takes place using the catalytic pair ligand $1 + AgClO_4$, instead of the halo copper complexes $6 7 + AgClO_4$. However, this Ag-catalyzed process is slower and less enantioselective than the Cumediated reaction. For instance, in the presence of 10 mol % of AgClO₄ and 10.2 mol % of ligand (*R*)-1a or (*R*)-1f the model reaction 2a + 3a requires 24 h for completion (CH₂Cl₂, rt), giving rise to the dihydropyridine 5a in 55% ee from (*R*)-1a and 73% ee from (*R*)-1f (67-68% chemical vield).
- (11) For recent examples of α,β-unsaturated imino dienophiles in ADAR, see: (a) Loncaric, C.; Manabe, K.; Kobayashi, S. Adv. Synth. Catal. 2003, 345, 475. (b) Loncaric, C.; Manabe, K.; Kobayashi, S. Chem. Commun. 2003, 574.
- (12) For instance, the tosylamides 5a and 5g, having an aryl and an alkenyl group at C-2 respectively, afforded the chiral 4-oxopiperidines 8a and 8g in satisfactory yields (58-64%, unoptimized) upon treatment with Zn/AcOH at room temperature.

5a or 5g
$$Zn$$

AcOH, tt O NH
Ba, R = Ph, 58%
Ba, R = Ph , 64%

For the deprotection of sulfonamides, see: (a) Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 3rd ed; John Wiley & Sons: New York, 1999; p 603–615. For the selective deprotection of *p*-nitrophenyl sulfonamides, see: (b) Fukuyama, T.; Jow, C.-K.; Cheung, M. *Tetrahedron Lett.* **1995**, *36*, 6373.

(13) For instance, from samples of dihydropyridones 5a and 5h of 92 and 78% ee, respectively, a single recrystallization from *n*-hexanes-CH₂Cl₂ provide enantiomerically pure compounds (>99.5% ee, 60-70% yield).

JA038494Y